Animals
9:58 am
Thu August 7, 2014

Butterfly Shifts From Shabby To Chic With A Tweak Of The Scales

Originally published on Fri August 8, 2014 4:57 pm

Explore the soft, smooth-looking surface of a butterfly wing through an electron microscope and you'll see it's actually covered in rugged, textured scales that overlap like shingles on a roof.

Zoom in even more, to the nano scale, and you'll find a labyrinth of hard, transparent architecture — pillars, ridges, archways, and sometimes even spiral loop-the-loops, all made of chitin, the same material that makes crab shells so tough.

According to research published this week in the Proceedings of the National Academy of Sciences, small changes to those structures can give a butterfly a more glamorous outfit.

Butterfly wings often have a layer of pigment that gives them a base color. But it's the light-bending chitin structures anchored on top that create an extraordinary range of bright colors, which can help with everything from camouflage to attracting mates and scaring off predators. Beams of light come in and ricochet off the scaly maze.

"As they bounce off these structures, they go through a process of constructive interference or destructive interference," says Antonia Monteiro, a biologist at the National University of Singapore. It's the same effect, she says, that can make a soap bubble look rainbow-colored and pearly.

It all has to do with geometry and spacing. Tweak one of those parameters, and different wavelengths of light will reflect from the scale, giving off different colors.

For the butterfly-bent biologists and physicists, a lingering question has been: What exactly would have to change in those tiny transparent structures to make a dull-looking butterfly brilliant? And how many generations would it take for the change to happen?

To find out, Monteiro decided to try to evolve a new color in the lab.

She teamed up with some Yale physicists and picked a butterfly species called the squinting bush brown, which lives up to its dull name. Aside from a few eye-catching spots, it blends well with tree bark. But the species has some flashy cousins with streaks of blue and violet on their wings.

"So, we wondered whether the specific species that was not showing any of those colors could also evolve those colors, if we forced it to through artificial selection," she says.

Here's what they did: The scales of the squinting bush brown's wings were reflecting light, but only very short wavelengths — too short to fall within the visible range of colors. But there was enough variation among a group of the butterflies that some had wings reflecting slightly longer wavelengths of light. By picking out those individuals and mating them to each other, Monteiro's team nudged each generation of butterflies toward the bluer end of the light spectrum.

One year — and six generations — later, the scientists had bred squinting bush browns that sported purply streaks across their wings. Monteiro was surprised to find that the new decor was the result of only very slight changes to the scales. The chitin layer had become a smidge thicker — 56 nanometers.

"It seems to be incredibly easy to evolve these new colors in butterflies," says Monteiro.

So, should the species need to adapt to new surroundings, it has powerful color technology in its back pocket. Tweak a little chitin, and the squinter can shift quickly from brown to brilliant.

Copyright 2014 NPR. To see more, visit http://www.npr.org/.

Transcript

MELISSA BLOCK, HOST:

The intricate patterns on butterfly wings come in all sorts of colors - dull grays and browns, iridescent blues and greens, red and yellow checkers. The colors help attract mates and fend off predators. But how those hues evolved has been a bit of a mystery. As NPR's Rae Ellen Bichell reports, scientists now say they've gotten a glimpse of how butterflies make their colors and how quickly they can change.

RAE ELLEN BICHELL, BYLINE: Zoom down to the surface of a soft, smooth looking butterfly wing and a biologist Antonia Monterio says it's actually covered in rugged, textured scales.

ANTONIA MONTERIO: That overlap like shingles on the roof.

BICHELL: Zoom in even more to the nanoscale and you'd find a labyrinth of hard, transparent architecture - pillars, ridges, archways, sometimes even spiral tulips.

MONTERIO: And all kinds of other intricate things all made out of chitin.

BICHELL: That's the same material that makes crab shells so tough. In butterflies, the way those chitin structures bend and reflect light is what creates such an extraordinary range of bright colors. Beams of light come in and ricochet off the scaly maze in all directions.

MONTERIO: As they bounce these structures, they go through the process of constructive interference or destructive interference.

BICHELL: It all has to do with geometry and spacing. Tweak those, and you change the wavelengths reflecting back out, which gives different colors. The question was - what exactly would have to change in those tiny, transparent structures to make a dull looking butterfly brilliant? And how long would it take? Monterio decided there was only one way to find out - to try to do it in the lab.

MONTERIO: To try and evolve color.

BICHELL: Monterio, who's now at the National University of Singapore, teamed up with some Yale physicists and picked a butterfly species called the squinting bush brown. It lives up to its dull name - goes well with tree bark. But it has some flashy close cousins with streaks of blue and violet on their wings.

MONTERIO: So we wondered whether this specific species that was not showing any of those colors, could also evolve those colors if we forced it to through artificial selection.

BICHELL: So here's what they did - some of the dull brown butterfly wings did reflect slightly shorter wavelengths of light.

MONTERIO: Meaning towards the bluer wavelengths of the light spectrum, and we mated those individuals with each other.

BICHELL: One year and six generations later, they had bred squinting bush browns that were sporting purpley streaks across their wings. Monterio was surprised to find that the new decor was the result of only very slight changes to the scales. The chitin had become a smidge thicker.

MONTERIO: It seems to be incredibly easy to evolve these new colors in butterflies.

BICHELL: So should this modest brown butterfly species need to adapt, it has a powerful color technology in his back pocket - tweak a little chitin and boom - from brown to brilliant. Monterio's work was published this week in the journal proceedings of the National Academy of Sciences. Rae Ellen Bichell, NPR News. Transcript provided by NPR, Copyright NPR.